Refined sign-balance on 321-avoiding permutations
نویسنده
چکیده
The number of even 321-avoiding permutations of length n is equal to the number of odd ones if n is even, and exceeds it by the n−1 2 th Catalan number otherwise. We present an involution that proves a refinement of this sign-balance property respecting the length of the longest increasing subsequence of the permutation. In addition, this yields a combinatorial proof of a recent analogous result of Adin and Roichman dealing with the last descent. In particular, we answer the question how to obtain the sign of a 321-avoiding permutation from the pair of tableaux resulting from the Robinson-Schensted-Knuth algorithm. The proof of the simple solution bases on a matching method given by Elizalde and Pak.
منابع مشابه
Sign-balance identities of Adin-Roichman type on 321-avoiding alternating permutations
Adin and Roichman proved a set of refined sign-balance identities on 321-avoiding permutations respecting the last descent of the permutations, which we call the identities of Adin–Roichman type. In thiswork,we construct a new involution onplane trees that proves refined sign-balance properties on 321-avoiding alternating permutations respecting the first and last entries of the permutations re...
متن کاملEquidistribution and Sign-Balance on 321-Avoiding Permutations
Let Tn be the set of 321-avoiding permutations of order n. Two properties of Tn are proved: (1) The last descent and last index minus one statistics are equidistributed over Tn, and also over subsets of permutations whose inverse has an (almost) prescribed descent set. An analogous result holds for Dyck paths. (2) The sign-and-last-descent enumerators for T2n and T2n+1 are essentially equal to ...
متن کاملBaxter Permutations, Maj-balances, and Positive Braids
In this paper we present two interesting properties of 321-avoiding Baxter permutations. The first one is a variant of refined major-balance identity for the 321avoiding Baxter permutations, respecting the number of fixed points and descents. The second one is a bijection between the 321-avoiding Baxter permutations with the entry 1 preceding the entry 2 and the positive braid words on four str...
متن کاملInversion Formulae on Permutations Avoiding 321
We will study the inversion statistic of 321-avoiding permutations, and obtain that the number of 321-avoiding permutations on [n] with m inversions is given by
متن کاملThe Fine Structure of 321 Avoiding Permutations. the Fine Structure of 321 Avoiding Permutations
Bivariate generating functions for various subsets of the class of permutations containing no descending sequence of length three or more are determined. The notion of absolute indecomposability of a permutation is introduced, and used in enumerating permutations which have a block structure avoiding 321, and whose blocks also have such structure (recursively). Generalizations of these results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 26 شماره
صفحات -
تاریخ انتشار 2005